3.7.42 \(\int \frac {x^3 (a+b \arcsin (c x))}{(d+e x^2)^3} \, dx\) [642]

3.7.42.1 Optimal result
3.7.42.2 Mathematica [A] (verified)
3.7.42.3 Rubi [A] (verified)
3.7.42.4 Maple [B] (verified)
3.7.42.5 Fricas [B] (verification not implemented)
3.7.42.6 Sympy [F]
3.7.42.7 Maxima [F]
3.7.42.8 Giac [F]
3.7.42.9 Mupad [F(-1)]

3.7.42.1 Optimal result

Integrand size = 21, antiderivative size = 153 \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=-\frac {b c x \sqrt {1-c^2 x^2}}{8 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {b \arcsin (c x)}{4 d e^2}+\frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}+\frac {b c \left (2 c^2 d+3 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{8 \sqrt {d} e^2 \left (c^2 d+e\right )^{3/2}} \]

output
-1/4*b*arcsin(c*x)/d/e^2+1/4*x^4*(a+b*arcsin(c*x))/d/(e*x^2+d)^2+1/8*b*c*( 
2*c^2*d+3*e)*arctan(x*(c^2*d+e)^(1/2)/d^(1/2)/(-c^2*x^2+1)^(1/2))/e^2/(c^2 
*d+e)^(3/2)/d^(1/2)-1/8*b*c*x*(-c^2*x^2+1)^(1/2)/e/(c^2*d+e)/(e*x^2+d)
 
3.7.42.2 Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.99 \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\frac {-\frac {\frac {b c e x \sqrt {1-c^2 x^2} \left (d+e x^2\right )}{c^2 d+e}+2 a \left (d+2 e x^2\right )}{\left (d+e x^2\right )^2}-\frac {2 b \left (d+2 e x^2\right ) \arcsin (c x)}{\left (d+e x^2\right )^2}+\frac {b c \left (2 c^2 d+3 e\right ) \arctan \left (\frac {\sqrt {c^2 d+e} x}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{\sqrt {d} \left (c^2 d+e\right )^{3/2}}}{8 e^2} \]

input
Integrate[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^3,x]
 
output
(-(((b*c*e*x*Sqrt[1 - c^2*x^2]*(d + e*x^2))/(c^2*d + e) + 2*a*(d + 2*e*x^2 
))/(d + e*x^2)^2) - (2*b*(d + 2*e*x^2)*ArcSin[c*x])/(d + e*x^2)^2 + (b*c*( 
2*c^2*d + 3*e)*ArcTan[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[1 - c^2*x^2])])/(S 
qrt[d]*(c^2*d + e)^(3/2)))/(8*e^2)
 
3.7.42.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.16, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5230, 27, 372, 398, 223, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx\)

\(\Big \downarrow \) 5230

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-b c \int \frac {x^4}{4 d \sqrt {1-c^2 x^2} \left (e x^2+d\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \int \frac {x^4}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )^2}dx}{4 d}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \left (\frac {d x \sqrt {1-c^2 x^2}}{2 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\int \frac {d-2 \left (d c^2+e\right ) x^2}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )}dx}{2 e \left (c^2 d+e\right )}\right )}{4 d}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \left (\frac {d x \sqrt {1-c^2 x^2}}{2 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\frac {d \left (2 c^2 d+3 e\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )}dx}{e}-\frac {2 \left (c^2 d+e\right ) \int \frac {1}{\sqrt {1-c^2 x^2}}dx}{e}}{2 e \left (c^2 d+e\right )}\right )}{4 d}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \left (\frac {d x \sqrt {1-c^2 x^2}}{2 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\frac {d \left (2 c^2 d+3 e\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \left (e x^2+d\right )}dx}{e}-\frac {2 \arcsin (c x) \left (c^2 d+e\right )}{c e}}{2 e \left (c^2 d+e\right )}\right )}{4 d}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \left (\frac {d x \sqrt {1-c^2 x^2}}{2 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\frac {d \left (2 c^2 d+3 e\right ) \int \frac {1}{d-\frac {\left (-d c^2-e\right ) x^2}{1-c^2 x^2}}d\frac {x}{\sqrt {1-c^2 x^2}}}{e}-\frac {2 \arcsin (c x) \left (c^2 d+e\right )}{c e}}{2 e \left (c^2 d+e\right )}\right )}{4 d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {x^4 (a+b \arcsin (c x))}{4 d \left (d+e x^2\right )^2}-\frac {b c \left (\frac {d x \sqrt {1-c^2 x^2}}{2 e \left (c^2 d+e\right ) \left (d+e x^2\right )}-\frac {\frac {\sqrt {d} \left (2 c^2 d+3 e\right ) \arctan \left (\frac {x \sqrt {c^2 d+e}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{e \sqrt {c^2 d+e}}-\frac {2 \arcsin (c x) \left (c^2 d+e\right )}{c e}}{2 e \left (c^2 d+e\right )}\right )}{4 d}\)

input
Int[(x^3*(a + b*ArcSin[c*x]))/(d + e*x^2)^3,x]
 
output
(x^4*(a + b*ArcSin[c*x]))/(4*d*(d + e*x^2)^2) - (b*c*((d*x*Sqrt[1 - c^2*x^ 
2])/(2*e*(c^2*d + e)*(d + e*x^2)) - ((-2*(c^2*d + e)*ArcSin[c*x])/(c*e) + 
(Sqrt[d]*(2*c^2*d + 3*e)*ArcTan[(Sqrt[c^2*d + e]*x)/(Sqrt[d]*Sqrt[1 - c^2* 
x^2])])/(e*Sqrt[c^2*d + e]))/(2*e*(c^2*d + e))))/(4*d)
 

3.7.42.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 5230
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp 
[(a + b*ArcSin[c*x])   u, x] - Simp[b*c   Int[SimplifyIntegrand[u/Sqrt[1 - 
c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 
0] && IntegerQ[p] && (GtQ[p, 0] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
 
3.7.42.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1019\) vs. \(2(133)=266\).

Time = 0.18 (sec) , antiderivative size = 1020, normalized size of antiderivative = 6.67

method result size
parts \(\text {Expression too large to display}\) \(1020\)
derivativedivides \(\text {Expression too large to display}\) \(1038\)
default \(\text {Expression too large to display}\) \(1038\)

input
int(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x,method=_RETURNVERBOSE)
 
output
a*(-1/2/e^2/(e*x^2+d)+1/4*d/e^2/(e*x^2+d)^2)+b/c^4*(1/4*c^8*arcsin(c*x)/e^ 
2*d/(c^2*e*x^2+c^2*d)^2-1/2*c^6*arcsin(c*x)/e^2/(c^2*e*x^2+c^2*d)+1/4*c^6/ 
e^2*(1/4/e*(-1/(c^2*d+e)*e/(c*x-(-c^2*e*d)^(1/2)/e)*(-(c*x-(-c^2*e*d)^(1/2 
)/e)^2-2*(-c^2*e*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2)-(- 
c^2*e*d)^(1/2)/(c^2*d+e)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)/e-2*(-c^2*e*d 
)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x-(-c^2*e*d) 
^(1/2)/e)^2-2*(-c^2*e*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/ 
2))/(c*x-(-c^2*e*d)^(1/2)/e)))+1/4/e*(-1/(c^2*d+e)*e/(c*x+(-c^2*e*d)^(1/2) 
/e)*(-(c*x+(-c^2*e*d)^(1/2)/e)^2+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2 
)/e)+(c^2*d+e)/e)^(1/2)+(-c^2*e*d)^(1/2)/(c^2*d+e)/((c^2*d+e)/e)^(1/2)*ln( 
(2*(c^2*d+e)/e+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/ 
e)^(1/2)*(-(c*x+(-c^2*e*d)^(1/2)/e)^2+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2*e*d) 
^(1/2)/e)+(c^2*d+e)/e)^(1/2))/(c*x+(-c^2*e*d)^(1/2)/e)))+3/4/(-c^2*e*d)^(1 
/2)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)/e+2*(-c^2*e*d)^(1/2)/e*(c*x+(-c^2* 
e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x+(-c^2*e*d)^(1/2)/e)^2+2*(-c^2*e 
*d)^(1/2)/e*(c*x+(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e)^(1/2))/(c*x+(-c^2*e*d)^( 
1/2)/e))-3/4/(-c^2*e*d)^(1/2)/((c^2*d+e)/e)^(1/2)*ln((2*(c^2*d+e)/e-2*(-c^ 
2*e*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+2*((c^2*d+e)/e)^(1/2)*(-(c*x-(-c^2 
*e*d)^(1/2)/e)^2-2*(-c^2*e*d)^(1/2)/e*(c*x-(-c^2*e*d)^(1/2)/e)+(c^2*d+e)/e 
)^(1/2))/(c*x-(-c^2*e*d)^(1/2)/e))))
 
3.7.42.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 442 vs. \(2 (133) = 266\).

Time = 0.39 (sec) , antiderivative size = 921, normalized size of antiderivative = 6.02 \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\left [-\frac {8 \, a c^{4} d^{4} + 16 \, a c^{2} d^{3} e + 8 \, a d^{2} e^{2} + 16 \, {\left (a c^{4} d^{3} e + 2 \, a c^{2} d^{2} e^{2} + a d e^{3}\right )} x^{2} + {\left (2 \, b c^{3} d^{3} + 3 \, b c d^{2} e + {\left (2 \, b c^{3} d e^{2} + 3 \, b c e^{3}\right )} x^{4} + 2 \, {\left (2 \, b c^{3} d^{2} e + 3 \, b c d e^{2}\right )} x^{2}\right )} \sqrt {-c^{2} d^{2} - d e} \log \left (\frac {{\left (8 \, c^{4} d^{2} + 8 \, c^{2} d e + e^{2}\right )} x^{4} - 2 \, {\left (4 \, c^{2} d^{2} + 3 \, d e\right )} x^{2} - 4 \, \sqrt {-c^{2} d^{2} - d e} \sqrt {-c^{2} x^{2} + 1} {\left ({\left (2 \, c^{2} d + e\right )} x^{3} - d x\right )} + d^{2}}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right ) + 8 \, {\left (b c^{4} d^{4} + 2 \, b c^{2} d^{3} e + b d^{2} e^{2} + 2 \, {\left (b c^{4} d^{3} e + 2 \, b c^{2} d^{2} e^{2} + b d e^{3}\right )} x^{2}\right )} \arcsin \left (c x\right ) + 4 \, \sqrt {-c^{2} x^{2} + 1} {\left ({\left (b c^{3} d^{2} e^{2} + b c d e^{3}\right )} x^{3} + {\left (b c^{3} d^{3} e + b c d^{2} e^{2}\right )} x\right )}}{32 \, {\left (c^{4} d^{5} e^{2} + 2 \, c^{2} d^{4} e^{3} + d^{3} e^{4} + {\left (c^{4} d^{3} e^{4} + 2 \, c^{2} d^{2} e^{5} + d e^{6}\right )} x^{4} + 2 \, {\left (c^{4} d^{4} e^{3} + 2 \, c^{2} d^{3} e^{4} + d^{2} e^{5}\right )} x^{2}\right )}}, -\frac {4 \, a c^{4} d^{4} + 8 \, a c^{2} d^{3} e + 4 \, a d^{2} e^{2} + 8 \, {\left (a c^{4} d^{3} e + 2 \, a c^{2} d^{2} e^{2} + a d e^{3}\right )} x^{2} + {\left (2 \, b c^{3} d^{3} + 3 \, b c d^{2} e + {\left (2 \, b c^{3} d e^{2} + 3 \, b c e^{3}\right )} x^{4} + 2 \, {\left (2 \, b c^{3} d^{2} e + 3 \, b c d e^{2}\right )} x^{2}\right )} \sqrt {c^{2} d^{2} + d e} \arctan \left (\frac {\sqrt {c^{2} d^{2} + d e} \sqrt {-c^{2} x^{2} + 1} {\left ({\left (2 \, c^{2} d + e\right )} x^{2} - d\right )}}{2 \, {\left ({\left (c^{4} d^{2} + c^{2} d e\right )} x^{3} - {\left (c^{2} d^{2} + d e\right )} x\right )}}\right ) + 4 \, {\left (b c^{4} d^{4} + 2 \, b c^{2} d^{3} e + b d^{2} e^{2} + 2 \, {\left (b c^{4} d^{3} e + 2 \, b c^{2} d^{2} e^{2} + b d e^{3}\right )} x^{2}\right )} \arcsin \left (c x\right ) + 2 \, \sqrt {-c^{2} x^{2} + 1} {\left ({\left (b c^{3} d^{2} e^{2} + b c d e^{3}\right )} x^{3} + {\left (b c^{3} d^{3} e + b c d^{2} e^{2}\right )} x\right )}}{16 \, {\left (c^{4} d^{5} e^{2} + 2 \, c^{2} d^{4} e^{3} + d^{3} e^{4} + {\left (c^{4} d^{3} e^{4} + 2 \, c^{2} d^{2} e^{5} + d e^{6}\right )} x^{4} + 2 \, {\left (c^{4} d^{4} e^{3} + 2 \, c^{2} d^{3} e^{4} + d^{2} e^{5}\right )} x^{2}\right )}}\right ] \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="fricas")
 
output
[-1/32*(8*a*c^4*d^4 + 16*a*c^2*d^3*e + 8*a*d^2*e^2 + 16*(a*c^4*d^3*e + 2*a 
*c^2*d^2*e^2 + a*d*e^3)*x^2 + (2*b*c^3*d^3 + 3*b*c*d^2*e + (2*b*c^3*d*e^2 
+ 3*b*c*e^3)*x^4 + 2*(2*b*c^3*d^2*e + 3*b*c*d*e^2)*x^2)*sqrt(-c^2*d^2 - d* 
e)*log(((8*c^4*d^2 + 8*c^2*d*e + e^2)*x^4 - 2*(4*c^2*d^2 + 3*d*e)*x^2 - 4* 
sqrt(-c^2*d^2 - d*e)*sqrt(-c^2*x^2 + 1)*((2*c^2*d + e)*x^3 - d*x) + d^2)/( 
e^2*x^4 + 2*d*e*x^2 + d^2)) + 8*(b*c^4*d^4 + 2*b*c^2*d^3*e + b*d^2*e^2 + 2 
*(b*c^4*d^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*arcsin(c*x) + 4*sqrt(-c^2* 
x^2 + 1)*((b*c^3*d^2*e^2 + b*c*d*e^3)*x^3 + (b*c^3*d^3*e + b*c*d^2*e^2)*x) 
)/(c^4*d^5*e^2 + 2*c^2*d^4*e^3 + d^3*e^4 + (c^4*d^3*e^4 + 2*c^2*d^2*e^5 + 
d*e^6)*x^4 + 2*(c^4*d^4*e^3 + 2*c^2*d^3*e^4 + d^2*e^5)*x^2), -1/16*(4*a*c^ 
4*d^4 + 8*a*c^2*d^3*e + 4*a*d^2*e^2 + 8*(a*c^4*d^3*e + 2*a*c^2*d^2*e^2 + a 
*d*e^3)*x^2 + (2*b*c^3*d^3 + 3*b*c*d^2*e + (2*b*c^3*d*e^2 + 3*b*c*e^3)*x^4 
 + 2*(2*b*c^3*d^2*e + 3*b*c*d*e^2)*x^2)*sqrt(c^2*d^2 + d*e)*arctan(1/2*sqr 
t(c^2*d^2 + d*e)*sqrt(-c^2*x^2 + 1)*((2*c^2*d + e)*x^2 - d)/((c^4*d^2 + c^ 
2*d*e)*x^3 - (c^2*d^2 + d*e)*x)) + 4*(b*c^4*d^4 + 2*b*c^2*d^3*e + b*d^2*e^ 
2 + 2*(b*c^4*d^3*e + 2*b*c^2*d^2*e^2 + b*d*e^3)*x^2)*arcsin(c*x) + 2*sqrt( 
-c^2*x^2 + 1)*((b*c^3*d^2*e^2 + b*c*d*e^3)*x^3 + (b*c^3*d^3*e + b*c*d^2*e^ 
2)*x))/(c^4*d^5*e^2 + 2*c^2*d^4*e^3 + d^3*e^4 + (c^4*d^3*e^4 + 2*c^2*d^2*e 
^5 + d*e^6)*x^4 + 2*(c^4*d^4*e^3 + 2*c^2*d^3*e^4 + d^2*e^5)*x^2)]
 
3.7.42.6 Sympy [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^{3} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{3}}\, dx \]

input
integrate(x**3*(a+b*asin(c*x))/(e*x**2+d)**3,x)
 
output
Integral(x**3*(a + b*asin(c*x))/(d + e*x**2)**3, x)
 
3.7.42.7 Maxima [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="maxima")
 
output
-1/4*(2*e*x^2 + d)*a/(e^4*x^4 + 2*d*e^3*x^2 + d^2*e^2) - 1/4*((2*e*x^2 + d 
)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 4*(e^4*x^4 + 2*d*e^3*x^2 + 
d^2*e^2)*integrate(1/4*(2*c*e*x^2 + c*d)*e^(1/2*log(c*x + 1) + 1/2*log(-c* 
x + 1))/(c^4*e^4*x^8 - c^2*d^2*e^2*x^2 + (2*c^4*d*e^3 - c^2*e^4)*x^6 + (c^ 
4*d^2*e^2 - 2*c^2*d*e^3)*x^4 + (c^2*e^4*x^6 + (2*c^2*d*e^3 - e^4)*x^4 - d^ 
2*e^2 + (c^2*d^2*e^2 - 2*d*e^3)*x^2)*e^(log(c*x + 1) + log(-c*x + 1))), x) 
)*b/(e^4*x^4 + 2*d*e^3*x^2 + d^2*e^2)
 
3.7.42.8 Giac [F]

\[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(a+b*arcsin(c*x))/(e*x^2+d)^3,x, algorithm="giac")
 
output
integrate((b*arcsin(c*x) + a)*x^3/(e*x^2 + d)^3, x)
 
3.7.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 (a+b \arcsin (c x))}{\left (d+e x^2\right )^3} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^3} \,d x \]

input
int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^3,x)
 
output
int((x^3*(a + b*asin(c*x)))/(d + e*x^2)^3, x)